
UCRL-JC-122246

Using Commercial-Off-the-Shelf
(COTS) Software in High-
Consequence Safety Systems

Prepared by
J. A. Scott
G. G. Preckshot
J. M. Gallagher

Fission Energy and Systems Safety Program
FFFEEESSSSSSPPP

Lawrence Livermore National Laboratory

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency
thereof.

Using Commercial-Off-the-Shelf (COTS)
Software in High-Consequence
Safety Systems

Manuscript date: November 10, 1995

Prepared by
J. A. Scott
G. G. Preckshot

Lawrence Livermore National Laboratory
7000 East Avenue
Livermore, CA 94550

J. M. Gallagher

U.S. Nuclear Regulatory Commission

Using Commercial Off-the-Shelf (COTS) Software in
High-Consequence Safety Systems

John A. Scott and G. Gary Preckshot, Lawrence Livermore National Laboratory
7000 East Avenue, Livermore, CA 94550

John M. Gallagher, U.S. Nuclear Regulatory Commission
Mail Stop 8 H3, NRR/HICB

Washington, DC 20555-0001

ABSTRACT

This paper is based on work performed by Lawrence
Livermore National Laboratory1 to assist the U.S. Nuclear
Regulatory Commission in understanding the state of the art
with respect to applying commercial off-the-shelf (COTS)
software to high-consequence safety systems. These systems,
for which the consequences of failure can be severe or
catastrophic, must be developed, implemented, and maintained
in ways that provide assurance that catastrophic consequences
will be prevented. This paper discusses various aspects of the
question of using commercially available software in these
systems. Risk, grading, and system assessment are discussed,
and relevant standards are summarized. A recommendation for
addressing key issues regarding the use of commercial
software in high-consequence safety systems is given.

I. INTRODUCTION

Systems for which the consequences of failure can be
severe or catastrophic, i.e., high-consequence safety systems
(HCSS's), must be developed, implemented, and maintained in
ways that provide assurance that catastrophic consequences
will be prevented. The process of assurance may include
avoiding faults in the system, designing the system to tolerate
faults without progressing to severe consequences, or
providing additional measures to mitigate the consequences of
system failure. Developers of such systems focus on achieving
safety goals even if extensive resources must be expended.
Historically, guidance for developing software to be used in an
HCSS has been based on custom builds using state-of-the-art
software and safety engineering practices, both at the system
and software level. Such development processes can be quite
costly.

Recently, economic pressures have caused a trend toward
streamlining organizations and increasing their efficiency.
System development activities, particularly those associated
with HCSS's, are expensive and, therefore, are the focus of
efforts to increase efficiency and reduce costs. This is not
merely an attempt to increase or protect profit—highly trained
personnel are a scarce resource. More efficient allocation of

1 This work was supported by the United States Nuclear Regulatory
Commission under a Memorandum of Understanding with the United
States Department of Energy, and performed under the auspices of
the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract W-7405-Eng-48.

skilled professionals to the unsolved safety problems rather
than those already solved results in safer systems.

Reflecting the scarcity of skilled talent, the costs associated
with mass-produced electronic hardware have been decreasing
steadily for many years, but costs for labor-intensive software
development have been continually increasing. Consequently,
software costs account for a growing percentage of system
development costs, which creates considerable pressure to
improve the efficiency and productivity of software
developers.

Software reuse is one means for increasing software
development productivity. The effective use of subroutine
libraries has long been a goal of software development
organizations. More recently, the advent of object-oriented
techniques has facilitated the development of reusable code.
Efforts to achieve reusability on a larger scale are also
underway. One example is the Asset Source for Software
Engineering Technology (ASSET) facility established under
ARPA’s Software Technology for Adaptable, Reliable
Systems (STARS) program. One of ASSET’s goals is to
provide a national marketplace for reusable software
products.2

Using commercially available software is another form of
software reuse and is the subject of this paper. In many low-
risk applications, it is practical to incorporate this type of
software into systems. In a number of other potential
applications of commercially available software, e.g., reactor
safety systems, it requires a considerable leap of faith to
believe that safety systems developed by knowledgeable
reactor instrumentation engineers can be replaced by
commercial off-the-shelf (COTS) software. Yet the modern
trend toward more and more engineering being done in
software packages makes this an inevitable suggestion.

A. Why There is a Problem

If this were the best of all possible worlds, commercial
software would be developed by professionals of calm and
deliberate mien in organizations with realistic schedules and
budgets. However, the term “COTS software” is generally
antithetical to realistic schedules and budgets, and COTS
products are often developed in an atmosphere of haste,
insufficient budget, and ever-increasing “features” to attract
and hold a larger market share. Such products are reasonably

2 Personal communication from Katherine Bean at the ASSET
facility, Jan. 10, 1995.

priced, but access to development and product verification
documentation, if any was produced, is usually limited. Some
products are developed specifically for the HCSS market,
although the selection is limited. The problem is to distinguish
these, and other competently developed products, from those
that are just “pretty good.” The payoff, for a good choice, is
releasing professionals from the task of developing a product
that recapitulates the COTS product, and applying them to the
real problem: safe implementation of a high-consequence
system.

B. Risk

A central theme in this exposition is risk. Treatment of risk
is one of the differences between high-consequence safety
systems and those of lower consequence. Risk, or risk
exposure, is usually taken to be the product of consequence
times the probability of occurrence. For low-consequence
systems, risk exposure is linear in both variables. However,
for high-consequence systems, risk may be non-linear, or
undefined but huge in the public eye. There are two reasons
for this. The first is that the extent of a high-consequence
failure is difficult to predict. The second is that estimates of
low probabilities for “rare” events are usually optimistic.
Human beings are constantly surprised to discover
interdependencies between things they thought were
independent. The implication for COTS software used in
HCSS's is that considerably higher standards of proof of
suitability will be required than would normally be the case
for normal industrial hazards. This makes risk grading a useful
gauge for COTS assessment effort.

Another implication that risk exposure has for HCSS
COTS software usage, is that any architecture using COTS
products must be tolerant of product failure. This is true for
any software product used in this venue, because nobody has
yet discovered how to build error-free software, or, for that
matter, write error-free specifications. However, COTS
products face additional hurdles not encountered by software
developed specifically for an HCSS. The specifically
developed software is tailored to the application, falls under
the same engineering controls as the target HCSS system, and
is designed for maintainability by the target industry. In
contrast, COTS products are usually not designed for narrow
applications, but instead must appeal to a broader market by
commercial necessity. There is usually a target price, a time-
constrained market window, and a set of features to be
delivered for the target price. To broaden the appeal of the
product, it is often multi-configurable, and the developer is
responsive to the demands of the most lucrative segment of his
clientele. Compared to the specifically developed product, the
COTS product is more likely to have extra features that may
surface as unused or unintended functions in the HCSS
application. In high-risk HCSS applications, therefore, COTS
products cannot be the last line of defense.

C. System-Level COTS Product Assessment

The issues facing a designer of an HCSS who would like to
use a COTS product fall into a natural order if risk
identification is used to grade the rigor of the assessment
process. One of the goals of any assessment process should be
to eliminate unsuitable options as soon as possible, reducing
time spent on untenable candidates. This is best done starting
from the viewpoint of the overall system in which the COTS
product will be embedded, then deriving the functional
requirements the product must satisfy, and finally proceeding
to product-specific issues. Risk identification comes first,
followed by product identification, and determination of level
of rigor of assessment steps that follow.

The first step taken with any HCSS design should be some
sort of hazard analysis that identifies potential high-
consequence failures. For example, an architecture is proposed
in which one or more COTS products play a role in detecting,
preventing, or mitigating failures. Probabilistic risk
assessment (PRA) is a typical type of analysis that is used to
identify the functions the system is required to perform. This
analysis uses fault trees to model subsystems, and event trees
to model accident progressions. One of the outcomes of the
analysis should be identification of the safety functions for
which specific subsystems are responsible. Some of these
subsystems may incorporate COTS products, and the safety
functions the products must provide become the basis for
assessment of candidate products. The PRA should also
determine whether diverse means will be necessary to ensure
the performance of a critical set of safety functions.

Once the environment for the COTS product has been
established in terms of the safety functions to be performed
and the nature of the product’s interfaces to other system
components, the next step is to assess the COTS product itself
in order to establish sufficient confidence that it will perform
the intended safety functions, and that it will interface with
other system components in ways that will not lead to unsafe
conditions. An example process is given in the Appendix. It is
crucially important at this point that the COTS product be
under strict configuration control. The product must be
precisely identified and all pertinent documentation must be
clearly linked to the exact version and configuration of the
product being assessed. The assessment cannot be done on a
product that is essentially a “moving target.” With respect to
the performance of safety functions, the assessment seeks to
determine that the product characteristics provide sufficient
confidence that the functions will be accomplished. Quality
attributes such as correctness, performance, and reliability are
assessed. With respect to system interactions, it is necessary to
determine that the product will not interfere with the
performance of system safety functions. Interference could
occur because of abnormal behavior within the COTS product
or because of inappropriate responses to external abnormal
conditions or events. The presence of unused functions
(legitimate features of the COTS product that are not needed
for the safety-related application) in most COTS products
requires that special assessments be performed to ensure that

inadvertent activation of these functions is prevented or, if
they are activated, that they do not interfere with system safety
functions.

D. The Regulator’s Dilemma

The general goal of regulatory bodies is to ensure that
adequate levels of safety are achieved when high-consequence
systems within their purview are developed. For software,
considerable effort has been expended to establish guidelines
and requirements for the application of maturing software
engineering practices to new developments. Since, in most
cases, software development methods cannot guarantee the
absence of faults, these guidelines and requirements call for
comprehensive, extensive application of currently accepted
software engineering practices to HCSS's. In cases with
potential catastrophic consequences, additional systems
measures such as diversity and defense-in-depth are
employed.

The pressures to employ COTS software in these systems
creates a new set of difficult questions for regulators. Aside
from technical questions related to the safe integration of a
COTS software product into an HCSS, frequent difficulties are
also encountered due to various competitive or management
concerns. These concerns tend to interfere with access to
records and information needed for product assessment. If the
desired records and information are unavailable, the regulator
(and developer) is then faced with either rejecting the COTS
product for use in the HCSS or with making a determination
about the acceptability of a COTS software product based on
acceptance criteria that are different than those used for new
developments. There is a danger in the search for alternatives.
It must be shown convincingly that alternative acceptance
criteria provide confidence equivalent to that obtained from
the processes applied to new developments since, if it is
possible to achieve this confidence with less costly new
alternatives, the existing processes used in new developments
will quickly be abandoned. Unhappily, the search for
alternatives to the assurance techniques used for new
developments frequently leads to issues that are still subjects
of research in software engineering.

II. HOW MUCH ASSESSMENT EFFORT?

A. Grading

Efficiency dictates that efforts to achieve safety should be
commensurate with risk exposure. The rationale for grading is
that extraordinary efforts should not be made to manage an
insignificant risk, but if a significant risk is present,
appropriate efforts should be expended to manage that risk.
Various types of risk can be considered with respect to
grading. Two types of grading of interest for HCSS's are
consequence grading, which is based on the impact associated
with potential failure, and grading with respect to the relative
importance to safety of constituent components. The former is
related to the overall extent of risk reduction effort necessary

to prevent the realization of hazards. Within the context of the
consequence category, the latter is related to the maximum
allowable probability of component or subsystem failure. Four
consequence levels are typically recognized:
• Failures that show the potential for significant off-site

consequences, such as consequences having a major
impact on the public.

• Failures that show the potential for significant on-site
consequences. Possible examples are consequences
involving on-site fatalities, loss of mission, or economic
disaster for the owner/operator.

• Failures that show the potential for only localized
consequences. Possible examples are consequences
involving a small number of recoverable injuries or
survivable economic impact on the owner/operator.

• Those having negligible impact, such as minor delays or
inconveniences.
For HCSS's, the highest category is usually the one of

interest. When grading components or subsystems with
respect to relative importance to safety, consideration of the
specific application area might allow specific types of
subsystems to be placed in categories for which varying levels
of assurance would be required. An example of grading with
respect to importance to safety is found in the IEC 12263

standard in which categories A, B, C, and Unclassified are
established for types of systems found in nuclear power plants.
Examples of systems in each category are, respectively,
• Safety shutdown systems
• Control systems
• Some warning and alarm systems
• Non-safety systems.

B. Benefits of Grading

The general benefit of applying a valid and effective
grading process is that each system will receive the level of
assurance effort that is appropriate for that system. Systems
that have some importance to safety will be treated as such
and not as uncontrolled developments. Systems that are
unimportant to safety will not have excessive assurance efforts
applied.

Grading is especially important with respect to determining
the acceptability of COTS products. As the magnitude of
potential consequences decreases or as the safety role of a
particular subsystem decreases, the potential impact of
unknowns related to the alternative acceptance criteria
discussed above is lessened. Therefore, the developer and
regulator have more flexibility with respect to the basis for
acceptance of the COTS software product.

3 IEC 1226, “Nuclear Power Plants—Instrumentation & Control
Systems Important for Safety-Classification,” International
Electrotechnical Commission, 1993.

III. THE ASSESSMENT PROCESS

A. The Role of Standards

Software standards tend to represent consensus thinking
with respect to software issues. This consensus includes the
viewpoints of researchers, who view the issues from a
theoretical standpoint, and practitioners, who view the issues
in terms of day-to-day realities. Regulators have specific goals
with respect to safety and need to be aware of both
viewpoints. Since the production of fault-free software is still
not possible in most cases, the standards provide important
information regarding accepted software practices that form a
basis for acceptance criteria for software, both for new
developments and for COTS software (although the former
has been treated far more extensively). These standards also
help to identify software issues that are currently research
questions. Descriptions of some of the key standards, with an
emphasis on the nuclear industry, are given below.

IEEE 7-4.3.2-1993—Standard Criteria for Digital Computers
in Safety Systems of Nuclear Power Generating Stations

This standard has a section dealing with COTS software
and addresses testing for COTS items. It also considers
software development methods and operating experience. The
standard has a subjective nature, however, as evidenced by the
following:

“Exceptions to the development steps required by
this standard or referenced documents may be taken as
long as there are other compensating factors that serve
to provide equivalent results.”

“Acceptance shall be based upon an engineering
judgment that the available evidence provides adequate
confidence that the existing commercial computer,
including hardware, software, firmware, and interfaces,
can perform its intended functions.”
While the general intent of these passages is clear, there is

room for a varying strictness of interpretation. For
professional engineers considering the use of COTS software
in an HCSS, it would probably be assumed that it must be
explicitly and convincingly shown how information from a
compensating factor provides equivalent results and, when
engineering judgment is used, that it be applied to specific,
narrowly defined questions and that its basis be convincing
and documented.

IEC 880—Software for Computers in the Safety Systems of
Nuclear Power Stations

IEC 880 is a prescriptive standard which offers detailed
criteria that software under its purview must satisfy. Risk-
related requirements are emphasized, as are interfaces with
and relations to other systems and hardware. The following
five-point summation of Section 5 of IEC 880 illustrates the
risk-based approach:
• Safety relevance of software parts should be determined

• More limiting recommendations apply to risky parts
• High-safety-impact software modules should be easily

identifiable from system structure and data layout
• Available testing and validation procedures should be

considered when doing the design
• If difficulties arise, a retrospective change of style may be

required.
“Self supervision” is required, meaning that the software

includes code to detect hardware errors and errors committed
by software. Self supervision is only regarded in the literature
as effective for detecting hardware errors; considerable
controversy still exists on whether there are effective means of
detecting software errors with more software.

Draft Addition (to IEC 880) on Commercial Dedication

IEC 880 provides a strong connection between either risks
or safety considerations and software (or system)
requirements, and this connection is continued and enhanced
in the draft addition on commercial dedication. The draft
addition strongly emphasizes determining the safety functions
that a COTS product will perform before deciding on the rigor
of the commercial dedication process to be followed. This is
combined with a strict view of experience data; for important
safety functions, COTS experience data must be relevant and
statistically valid.

IEC 1226—The Classification of Instrumentation and Control
Systems Important to Safety for Nuclear Power Plants

IEC 1226 provides the missing link that the other standards
discussed herein lack (at least for the nuclear industry): a
consistent definition of safety categories. This standard uses
terms familiar to those involved in nuclear power plant safety:
redundancy, diversity, defense-in-depth, and reliability.

IEEE Software Standards

The IEEE software standards are widely recognized
consensus standards addressing a range of software issues.
Some of the key standards related to the assessment of COTS
software are those addressing configuration management,
verification and validation (V&V), software development and
safety plans, and life-cycle processes. The guidance in these
standards generally addresses new developments, but this
information is valuable in assessing software processes and
the product development records of the COTS software
product.

ISO 9000-3

The ISO 9000 standards apply to quality assurance
programs in general, and are not limited to software. ISO
9000-3 interprets the general standards as applied to software,
and fulfills somewhat the same role as IEEE 730.1 (Software
Quality Assurance Plans); that is, it is a pro forma standard
that acts, in part, as an umbrella standard, mentioning other

aspects of software quality such as software configuration
management and software V&V.

B. Difficult Issues in Assessing COTS Software

A number of issues that are particularly difficult to address
have surfaced with respect to the determination of the
acceptability of a COTS software product for use in an HCSS.
Brief discussions of the issues and key aspects are given
below.

Unexpected Functions

Unexpected functions are either unused functions
(functions intended by the developer but not needed for the
application) or unintended functions (unplanned functions
arising from design or implementation errors). Unexpected
functions are functions built into the COTS software product
either as intended commercial features or as design errors,
neither of which are desired for the high-consequence
application. The probability that unexpected functions would
be present in a new software development for a specific
application is much less than for the COTS software product.
The concern is that unexpected functions might affect the
performance of system safety functions if the functions are
inadvertently activated. unexpected functions are a concern in
system-level COTS product assessment, as discussed above.

Operational Profiles

In order to evaluate the COTS software in performing its
assigned safety functions and interacting with the overall
system, it is necessary to understand the operational profile of
the software’s role in the system. This profile includes items
such as the nature of inputs and outputs, transaction loads,
performance requirements, and reliability requirements. For
new developments, this information is included in the product
specifications and the product is designed to fit the profile. For
COTS products, the operational profile assumed in its design
might not be known precisely. Consequently, it is difficult to
assess where discrepancies between the design and the
specification for COTS usage in an HCSS might appear. This
could be particularly important in situations where the
software must operate outside of its normal parameters.

Version Control

Two key considerations arise regarding version control.
The first is a COTS product to be evaluated for use in an
HCSS must be identified by version. All of the information
pertaining to the COTS item to be used in the assessment must
be clearly linked to the specific version to be incorporated into
the HCSS. Different versions require separate assessments. It
is also possible that a COTS product is so highly configurable
that information from several sources regarding the same
version will not be equally valid for the COTS acceptability
determination.

The second consideration is the question of how bug fixes
and new releases will be handled once the COTS software has
been integrated into a system. Also, who will perform the
modifications, and how will the acceptability of modified
software be determined? These are particularly troublesome
questions in cases where software was accepted under
alternative acceptance criteria because product information
was not available. It may be possible to freeze versions for a
period of time, but eventually, system evolution or vendor
support requirements will generate a need for changes.

Site-Specific Configuration

The COTS product must be evaluated in the light of a full
range of system configuration questions. New developments
would be designed for the specific HCSS site configuration
requirements. Considerations include site requirements and
constraints, platform configurations, configurations of layered
or interfacing software, and possible configurations of the
COTS product itself.

Error Reporting

Error reporting is a key issue with respect to the use of
commercial software in safety-related systems. Two-way
communication between the COTS software developer and
COTS software users is necessary to ensure that known or
recently discovered errors are documented for evaluation of
their potential impact on high-consequence systems, and to
ensure that additional information can be obtained from the
software developer if anomalies are observed during system
operations. Long-term relationships of this type can be
difficult to establish and maintain with vendors of commercial
products.

C. Process or Product?

The Case for Product

Careful examination of a COTS product is essential to
assess its acceptability for use in an HCSS. Three sources for
information should be used in the assessment: product
development records, operating experience data, and post-
development product testing. Product development records
include specifications, code, V&V records, etc. Experience
data can provide information about reliability, correctness, and
performance; however, care must be taken to ensure that the
data are valid. Data based on other versions or different
configurations may not be applicable. Post-development
product testing can be performed to obtain additional
assessment data. This testing might be done to address minor
deficiencies in development records or to address special
requirements associated with the planned use of the COTS
software in an HCSS.

The Case for Process

It is also important to assess the development processes
that were applied during product development. This
assessment helps to establish the validity and value of the
product development records. Product information is not very
useful without confidence that the processes that generated the
information are comparable to commonly accepted practices
for developing high-integrity software. Various methods have
been developed to assess these processes, including ISO and
SEI CMM (Software Engineering Institute Capability
Maturity Model) style assessments, and other assessment
processes that may have special focuses. In addition to
software development process assessment, a number of
organizational indicators can also provide important
information. It is important to note that certifications from past
assessments are perishable and that those past assessments
might not encompass everything of interest with respect to
COTS acceptability determinations.

IV. REPLACING MISSING DOCUMENTATION

Considerable controversy rages about the acceptability of
various approaches to replacing, reconstructing, or substituting
for missing COTS product documentation. Some viewpoints,
such as that found in IEEE 7-4.3.2, focus on the question of
applying engineering judgment to these and other assessment
questions. IEEE 7-4.3.2 was written for competent engineers,
and in that light, it is fair to assume that engineering judgment
will be applied carefully to specific, narrowly defined
questions, and that the rationale for the judgment will be
documented and able to withstand critical, external scrutiny.
Engineering judgment cannot be used to justify generic, hand-
waving arguments about COTS product acceptability.

One proposed alternative to the lack of documentation is
operational experience. It seems intuitive that experience data
derived from extensive usage of the same version of a product
in similar applications would indicate that the product is
acceptable for the intended application. There are several
problems with this assumption. First, configuration data is
rarely supplied and version data is often missing. Therefore,
the statistical validity of the data is unknown. Large bases of
experience data usually span releases and configurations of a
given product. The second problem is that circumstances
surrounding the occurrence, monitoring, and recording of
failures are often vaguely reported. These activities are not
uniformly controlled; in fact, there might be some motivation
for COTS vendors to limit publication of negative experience.
Another key issue regarding operating experience is that
extensively used products can still have crucial faults that
could cause problems in safety systems. The tendency is to
consider operational experience to be like extensive random
testing. In this regard, operational experience suffers from the
same shortcoming as testing: testing cannot prove the absence
of faults.

A second proposed alternative acceptance criterion is using
post-development testing to compensate for a major lack of

product development documentation. However, as noted
above, testing cannot confirm the absence of faults in
software. In addition, it is difficult to use testing to detect
unintended functions. Testing can, however, demonstrate that
intended functions are implemented and that anticipated error
conditions are handled properly.

A third approach to replacing missing data is to perform
data reconstruction with methods such as reverse engineering.
This can be a difficult task requiring as much effort as doing a
new development and, even if accomplished, it is not clear
that the reconstruction process was error-free.

In general, the approach of compensating for missing
information by using information from other sources involves
research questions or data validity problems. One must know
exactly how one source of information replaces information
from another. Until this is known, there is considerable risk in
accepting a COTS product for use in an HCSS based on such
techniques.

However, compensation is more acceptable as risk
exposure decreases.

V. THE BOTTOM LINE

Given the current state of the art in software engineering
and the technical, political, and maintenance considerations
associated with typical commercial software, it appears that it
will be difficult at best to incorporate COTS software products
into high-consequence safety systems. If an effective grading
process is in place, however, the tradeoffs associated with the
use of COTS products in lower risk categories become more
palatable.

For software in the highest risk categories, our
recommendation is that, after the systems analyses have been
performed and the COTS usage specifications developed, the
acceptance process be based primarily on an examination of
comprehensive product development records. Assessments of
the COTS vendor’s software processes should also be
performed to ensure that the product development records
accurately represent the quality of the software. Post-
development testing should be performed to address minor
deficiencies in product development records and to address
unique requirements that might arise from a particular
proposed use of the product. Operational experience, if
statistically valid, can be used to increase confidence in the
product and to help answer questions arising in examining
specific aspects of the software. In this software category then,
acceptance should be based on a combination of information
from all sources, but the use of compensating factors should
be minimized, if used at all. This approach is consistent with
current requirements for new developments of this type of
software and, therefore, will not create a situation in which the
COTS acceptance process serves as a conduit for escaping the
scrutiny of new development requirements.

A. Is COTS Really Cost-Effective?

Acceptance

Although it appears initially to be much cheaper to
purchase COTS software than to perform new developments,
the costs associated with an acceptance process that attempts
to provide adequate assurance for software used in systems in
the highest risk categories can be quite high. Less expensive
“shortcuts” provided by proposed alternative acceptance
criteria have not been demonstrated to provide adequate
assurance. In typical cases, it can be difficult and expensive to
obtain comprehensive product development records, not to
mention vendor process assessments. Ensuring that unintended
functions cannot impair system safety can also be expensive.

Finally, commercial vendors are usually not motivated to
enter into long-term error reporting contracts or to assume
liability for such reporting, so establishing such arrangements
might also be quite expensive.

Maintenance

Accepting a COTS software product for use in an HCSS is
just the beginning. Users will eventually be forced into
upgrades, and an upgraded commercial product must be re-
qualified. This process is probably easier if the upgrades are
produced by a known, high-quality development process,
preferably the same one that was used for the original
development. If the COTS software had been approved by an
alternative process because development records were not
available, the question of upgrades might be particularly
vexing, especially if the original vendor is no longer in
business. User modification, even if full documentation is
available, will probably be more difficult than if done by the
original developing organization. The costs associated with
these difficulties can be very high and should be considered
when making the initial decision to use COTS software in
high-consequence safety systems.

Acceptance and maintenance issues, and their associated
costs, become less important as importance to safety
decreases.

B. Is it Possible to Use COTS Software in an
HCSS?

Yes. Some software vendors, such as programmable logic
controller vendors, produce software with the knowledge that
it will be used in systems with medium to high risks. Some of
these vendors use software processes that have been designed
to produce high-integrity software. They are generally aware
of the types of hazards associated with the systems in which
their products will be used and those hazards have been
considered in their designs. In order to meet the demands of
the high-integrity marketplace, they may be motivated to form
long-term partnerships with users and to supply additional
reliability documentation. Such vendors may well be in a
position to meet applicable acceptance and regulatory
requirements for the use of their products in HCSS’s.

VI. REFERENCES

[1] J. Dennis Lawrence, Software Reliability and Safety in Nuclear
Reactor Protection Systems, NUREG/CR-6101, UCRL-ID-
114839, Lawrence Livermore National Laboratory, 1993.

[2] J. Dennis Lawrence and W. L. Persons, Survey of Industry
Methods for Producing Highly Reliable Software, NUREG/CR-
6278, UCRL-ID-117524, Lawrence Livermore National
Laboratory, 1994.

[3] J. Dennis Lawrence and G. G. Preckshot, Design Factors for
Safety-Critical Software, NUREG/CR-6294, Lawrence
Livermore National Laboratory, 1994.

[4] G. G. Preckshot, Method for Performing Diversity and Defense-
in-Depth Analyses of Reactor Protection Systems, NUREG/CR-
6303, Lawrence Livermore National Laboratory, 1994.

APPENDIX: QUALIFICATION CRITERIA

A representative risk-based COTS software acceptance process is proposed in this appendix. Tables A-1 through A-3
describe a safety category grading scheme. Table A-1 describes safety categories of systems used in nuclear reactors. Table A-2
describes categories of usage, based on whether the COTS software is itself used, or products of the COTS software are used.
Table A-3 gives the resultant safety categories.

Table A-4 describes the initial four steps of the risk-based acceptance process. These steps determine which of the following
three tables are entered. Tables A-5 through A-7 describe the level of rigor with which to apply Tables A-8 through A-21.

Tables A-8 through A-21 give standards-derived acceptance criteria.

Table A-1
Safety Categories

Table A-2
COTS Usage Categories

4 The choice of A or B category depends upon whether the A module has diverse alternatives or whether there is another software tool, treated

Category Example Systems

A Reactor Protection System (RPS)

Engineered Safety Features Actuation System (ESFAS)

Instrumentation essential for operator action

B Reactor automatic control system

Control room data processing system

Fire suppression system

Refueling system interlocks and circuits

C Alarms, annunciators

Radwaste and area monitoring

Access control system

Emergency communications system

Usage
Category Description

Equivalent
IEC 1226

Direct Directly used in an A, B, or C application. Usage

Indirect Directly produces executable modules that are used in A, B, or C
applications (software tools such as compilers, linkers, automatic
configuration managers, or the like).

Produces A modules

Produces B modules

Produces C modules

A or B 4

B or C 5

unclassified

Support CASE systems, or other support systems that indirectly assist in
the production of A, B, or C applications, or software that runs as
an independent background surveillance system of A, B, or C
applications.

unclassified

Unrelated Software that has no impact on A, B, or C applications. unclassified

Table A-3
COTS Safety Category Criteria

Table A-4
Preliminary COTS Acceptance Criteria

as category A, that verifies the output of the subject tool.
5 The choice of B or C category depends upon whether the B module has diverse alternatives or whether there is another software tool, treated
as category B, that verifies the output of the subject tool.

1 If the COTS product is used directly in a safety-related system, the COTS safety category is
determined by the criteria of IEC 1226.

2 If the COTS product directly produces or controls the configuration of an executable software
product that is used in a safety related-system and no method exists to validate the output of the
COTS product, the COTS safety category is the same as that of its output, except that category C
software may be produced by COTS products of the unclassified category. COTS software that
directly produces category A or B software that is validated by other means is category B or C,
respectively.

3 If the COTS product supports production of category A, B, or C software, but does not directly
produce or control the configuration of such software modules, it is safety category unclassified.

4 If the COTS product has no impact on category A, B, or C software or systems, it is safety
category unclassified.

1 Risk and hazards analyses should be used to identify system-level safety functions required.

2 The safety functions (if any) that the COTS product will perform should be identified.

3 The COTS product should be under configuration and change control. See Table A-11 for
detailed software configuration management (SCM) criteria.

4 The safety category of the COTS product should be determined. Proceed to Table A-5, A-6, A-
7, or A-7 depending upon category A, B, C, or unclassified, respectively.

Table A-5
Category A COTS Acceptance Criteria

Table A-6
Category B COTS Acceptance Criteria

5 The COTS product should have been developed under a rigorous Software Quality Assurance
(SQA) Plan as defined by IEEE 730.1, ISO 9000-3, or IEC 880. This should include full V&V.

See Table A-10 for detailed SQA criteria. See Table A-12 for detailed V&V criteria. See Table
A-19 for minimum required V&V tasks.

6 The documentation of Table A-14 should be available for review that demonstrates Criterion 5
and also that good software engineering practices were used. Evidence should be available that
the minimum required reviews of Table A-15 were conducted.

7 It should be demonstrated that the COTS product meets the requirements identified in
Criterion 2.

8 It should be demonstrated that the COTS product does not violate system safety requirements or
constraints.

9 The interfaces between the COTS product and other systems or software should be identified
and clearly defined.

10 The COTS product should have significant (> 1 year operating time), current severe-error-free
operating experience in at least two independent operating locations. Adverse reports should not
be excluded even if two operating locations can be found with no adverse reports. The version
and release of the proposed COTS product should be identical to that used in the experience data
base. The configuration of the product in the experience data base should closely match that of
the proposed COTS product.

11 All errors, severe or otherwise, should be reported and analyzed.

12 Additional validation and testing should be performed if needed to compensate for a small
amount of missing documentation or alterations in configuration.

5 The COTS product should have been developed under a quality assurance plan and a systematic
software development process. See Table A-10, entries 5 through 10 for SQA criteria. See Table
A-12, entries 3 through 7 for V&V criteria.

6 Documentation should demonstrate Criterion 5. See Table A-14 for minimum required
documentation.

7 It should be demonstrated that the COTS product will fulfill its safety functions as identified in
Criterion 2, and that its reliability is sufficiently high that it does not present a high frequency of
challenges to category A systems.

8 The COTS product is consistent with system safety requirements.

9 The COTS product has operated satisfactorily in similar applications. The version and release of
reported experience may not be identical to the proposed COTS product, but a consistent
configuration management program and well-managed update program provide traceability and
change control.

10 Error reporting, tracking, and resolution are consistent and correctly attributable to version and
release. The version and release proposed has no major unresolved problems. A current bug list
should be available to COTS purchasers as a support option.

Table A-7
Category C COTS Acceptance Criteria

Table A-8
Failure Consequence Criteria

Table A-9
Plan Existence Criteria

5 The COTS product should have been developed according to good software engineering
practices. Minimum documentation as in Table A-20 should be available or reconstructable.
Minimum V&V tasks as in Table A-19, entries 2, 4, 8, 9, and 19–22, should have been
performed.

6 Minimum documentation described in Criterion 5, including V&V task documentation, should
be available for inspection.

7 The COTS product may enhance safety by improving surveillance, improving operators’ grasp
of plant conditions, assisting in maintenance activities, reducing demands on category A or B
systems, monitoring or reducing the effects of radiation releases, or similar purposes. The
purpose or effect should be verified.

8 It should be demonstrated that the COTS product cannot adversely affect the safety functions of
category A or B systems or software.

9 The COTS product has been shown to operate without serious malfunction in the instant
application.

10 An error reporting scheme is planned or in place that tracks malfunctions of this COTS product
in applications controlled by this applicant. Documentation and records retention allow error
histories of 5 years or length of service, whichever is shorter.

1 Are consequences of failure unacceptable? See Table A-9

2 Are consequences of failure acceptable? Terminate

1 An SQA plan and documentation exist See Table A-10

2 A configuration management plan exists See Table A-11

3 A software V&V plan exists See Table A-12

4 Some of the above do not exist See Table A-13

Table A-10
SQA Criteria

1 Does the SQA plan cover the minimum required subjects in the
required format?

Format and subject matter is
standard-dependent, but most
standards specify similar
approaches

See IEEE 730.1

2 Does the plan describe responsibilities, authority, and relations
between SQA units and software development units?

IEEE 730.1

3 Is minimum documentation available? See Table A-14 for required
documentation. See Table A-17
for optional documentation.

4 Were the minimum SQA reviews and audits performed? See Table A-15 for minimum
required reviews and audits

5 Are standards, practices, conventions, and metrics that were used,
described?

See Table A-18 for suggested
areas of standardization

6 Were procedures for problem reporting, tracking, and resolving
described?

Problems documented & not forgotten

Problem reports validated

Feedback to developer & user

Data collected for metrics & SQA

IEEE 730.1

IEEE 730.2

IEEE 730.2

IEEE 730.2

IEEE 730.2

7 Were configuration management practices followed? See Table A-11

8 Were V&V tasks performed? See Table A-12

9 Did other software suppliers contribute to the product? See Table A-16. “The supplier is
responsible for the validation of
subcontracted work.”

ISO 9000-3

10 What records were generated, maintained, and retained? IEEE 730.1

11 What methods or procedures were used to identify, assess, monitor,
and control risk during development of the COTS product?

IEEE 730.1

Table A-11
Software Configuration Management Criteria

1 Does the configuration management plan cover the minimum
required subjects in the required format?

Format and subject matter is
standard-dependent, but most
standards specify similar
approaches.

See IEEE 828

2 Does the plan describe responsibilities, authority, and relations
between configuration management units and software development
units?

IEEE 828

3 At least one configuration control board (CCB) is required. Does the
plan describe the duties and responsibilities of the CCB and relations
between the CCB, SQA, and software developers? e.g.,

Authority & responsibility
Role
Personnel
How appointed
Relation of developers & users

IEEE 828

4 Does the configuration management operation provide the following
required functions?

Configuration ID (baselines)
Configuration control
Configuration status accounting & reporting
Configuration audits & reviews

IEEE 828

5 Configuration management is founded upon the establishment of
“configuration baselines” for each version of each product. Is each
product or version uniquely identified and “baselined”?

IEEE 828

6 Is the level of authority required for change (i.e., change control)
described? Appropriate subjects include:

Change approval routing lists
Library control
Access control
R/w protection
Member protection
Member identification
Archive maintenance
Change history
Disaster recovery
Authority of each CCB over listed configuration items

IEEE 828

7 Does status accounting include

Data collection
Identified reports
Problem investigation authority
Maintaining and reporting
Status of specifications
Status of changes
Status of product versions
Status of software updates
Status of client-furnished items

IEEE 828

Table A-11
Software Configuration Management Criteria (cont.)

Table A-12
Software V&V Criteria

8 Are suppliers of software products (e.g., COTS) under control? For
each supplier. . .

Is the SCM capability known?
How is SCM performance monitored?

For each product. . .

Is the version in use archived?
Is the version ID’d & baselined?
Is the product under change control?
Are product interfaces under control?
Are suppliers CM audits “visible?”
Is there valid problem tracking?

Regarding supplier records. . .

What records are kept?
Can you get at them?
How good are they?
What security does the supplier have?

IEEE 828 and IEEE 1042. “The
supplier (is responsible for)
validation, storage, protection,
and maintenance of (included
software products).”

ISO 9000-3

9 Are the records to be maintained identified and are there retention
periods specified for each type of record?

IEEE 828

10 What additional policies and directives govern the configuration
management?

See Table A-21 for a list of
typical policies and directives

1 Does the V&V plan cover the minimum required subjects in the
required format?

Format and subject matter is
standard-dependent, but most
standards specify similar
approaches.

See IEEE 1012

2 Is the organizational structure of the V&V function described,
including the independence (or lack thereof) of the V&V
organization from the software development organization?

IEEE 1012

3 Have the minimum required V&V tasks been accomplished? See Table A-19 for minimum
tasks

4 Does the V&V function detect errors as early in the development
process as possible?

IEEE 1012

5 Can software changes and their consequences be assessed quickly? IEEE 1012

6 Are V&V functions coordinated with the software development life
cycle?

IEEE 1012

7 Are significant portions of V&V data missing? See Table A-13

Table A-13
Actions to Take When Data is Missing

Table A-14
Minimum SQA Documentation

Table A-15
Minimum Required SQA Reviews and Audits

1 Can missing data be reconstructed from other available data? Reconstruct data (see Table
A-20) and proceed to Table A-
12.

ANSI/ANS-10.4

2 Can missing data be reverse-engineered from existing software
products?

Reverse-engineer data (see Table
A-20) and proceed to Table A-
12.

ANSI/ANS-10.4

3 Is recovered data and/or usage experience and configuration control
insufficient to justify intended usage?

See Table A-20 for minimum
data. If insufficient, terminate
with prejudice.

ANSI/ANS-10.4 and IEEE 828

4 Is sufficient test data available to support intended usage? Reconstruct tests and proceed to
Table A-12.

ANSI/ANS-10.4

1 Software Quality Assurance Plan IEEE 730.1

2 Software Requirements Specification IEEE 730.1

3 Software Design Description IEEE 730.1

4 Software V&V Plan IEEE 730.1

5 Software V&V Report IEEE 730.1

6 User Documentation (Manuals) IEEE 730.1

7 Software Configuration Management Plan IEEE 730.1

1 Software Requirements Review IEEE 730.1

2 Preliminary Design Review IEEE 730.1

3 Conceptual Design Review IEEE 730.1

4 Software V&V Plan Review IEEE 730.1

5 Functional Audits (e.g., validations) IEEE 730.1

6 Physical Audits (e.g., physical deliverables) IEEE 730.1

7 In-process Audits (e.g., life cycle stage verification audits) IEEE 730.1

8 Managerial Reviews IEEE 730.1

Table A-16
SQA, SCM, and V&V for Other Software Suppliers

Table A-17
Suggested Additional Documentation

Table A-18
Suggested Areas of Standardization

1 SQA for purchased product shall meet the same requirements as if it
were developed in-house. For to-be-developed COTS, the other
software supplier shall perform the requirements of IEEE 730.1. For
previously developed COTS, the “methods used to assure the
suitability of the product for (its intended) use” shall be described.

IEEE 730.1

“Software suppliers” shall select subcontractors on the basis of their
ability to meet subcontract requirements, including quality
requirements.

ISO 9000-3

2 SCM for purchased product shall meet the same requirements as if it
were developed in-house. As a minimum, the other software supplier
is required to implement the provisions of IEEE 828.

IEEE 828. See also Table A-11,
line 8

3 V&V for COTS is not addressed, except indirectly through IEEE
730.1 through its provision requiring IEEE 730.1 compliance of the
software supplier, or through ANSI/ANS-10.4 through its provisions
for reconstruction of missing data.

See Table A-10, line 8, and Table
A-13

1 Software Development Plan IEEE 730.1

2 Standards & Procedures Manual IEEE 730.1

3 Software Project Management Plan IEEE 730.1

4 Software Maintenance Manual IEEE 730.1

5 User Requirements Specification IEEE 730.1

6 External Interfaces Specification IEEE 730.1

7 Internal Interfaces Specification IEEE 730.1

8 Operations Manual IEEE 730.1

9 Installation Manual IEEE 730.1

10 Training Manual IEEE 730.1

11 Training Plan (for SQA personnel) IEEE 730.1

12 Software Metrics Plan IEEE 730.1

13 Software Security Plan IEEE 730.1

1 Documentation Standards IEEE P730.2

2 Logical Structure Standards IEEE P730.2

3 Coding Standards IEEE P730.2

4 Comment Standards IEEE P730.2

5 Testing Standards IEEE P730.2

6 SQA Product & Process Metrics IEEE P730.2

Table A-19
Minimum V&V Tasks

1 Software V&V Plan IEEE 730.1 and IEEE 1012

2 Requirements (e.g., software requirements specification (SRS))
Analysis

Existence
Clarity
Consistency
Completeness

All functions included
Environment specified
Inputs & outputs specified
Standards used specified

IEEE 1012

ANSI/ANS-10.4
ANSI/ANS-10.4
ANSI/ANS-10.4
ANSI/ANS-10.4

Correctness
Feasibility
Testability

ANSI/ANS-10.4
ANSI/ANS-10.4
ANSI/ANS-10.4

3 SRS Traceability Analysis IEEE 1012 & ANSI/ANS-10.4

4 Interface Requirements Analysis IEEE 1012 & ANSI/ANS-10.4

5 Test Plan Generation IEEE 1012 & ANSI/ANS-10.4

6 Acceptance Test Plan Generation IEEE 1012

7 Design Analysis

Completeness
Correctness
Consistency
Clearness
Feasibility

IEEE 1012

ANSI/ANS-10.4
ANSI/ANS-10.4
ANSI/ANS-10.4
ANSI/ANS-10.4
ANSI/ANS-10.4

8 Design Traceability Analysis IEEE 1012 & ANSI/ANS-10.4

9 Interface Design Analysis IEEE 1012

10 Unit Test Plan Generation IEEE 1012 & ANSI/ANS-10.4

11 Integration Test Plan Generation IEEE 1012 & ANSI/ANS-10.4

12 Test Designs
Code test drivers

IEEE 1012
ANSI/ANS-10.4

13 Source Code Analysis

Conformance to standards
Adequate comments
Clear and understandable
Consistent with design
Strong typing
Error-checking

IEEE 1012

ANSI/ANS-10.4
ANSI/ANS-10.4
ANSI/ANS-10.4
ANSI/ANS-10.4
ANSI/ANS-10.4
ANSI/ANS-10.4

14 Source Code Traceability IEEE 1012

15 Interface Code Analysis
Well-controlled software interfaces

IEEE 1012
ANSI/ANS-10.4

16 Documentation Evaluation IEEE 1012

17 Test Procedure Generation

Unit Test
Integration Test
System Test
Acceptance Test

IEEE 1012 & ANSI/ANS-10.4

Table A-19
Minimum V&V Tasks (cont.)

Table A-20
Minimum Documentation Needed for a Posteriori V&V

18 Unit Test Execution

Unit test results

IEEE 1012

ANSI/ANS-10.4

19 Integration Test Execution

Size
Timing
Interface control
Interactions verified
Build control and documentation

IEEE 1012

ANSI/ANS-10.4
ANSI/ANS-10.4
ANSI/ANS-10.4
ANSI/ANS-10.4
ANSI/ANS-10.4

20 System Test Execution

Each requirement tested?
Each requirement met?
All test cases executed and checked?

IEEE 1012

ANSI/ANS-10.4
ANSI/ANS-10.4
ANSI/ANS-10.4

21 Acceptance Test Execution IEEE 1012

22 Installation Configuration Audit

Deliverables identified
Can delivered program be rebuilt?
Do test cases still work?

IEEE 1012

ANSI/ANS-10.4
ANSI/ANS-10.4
ANSI/ANS-10.4

23 V&V Final Report IEEE 1012

24 Baseline Change Assessment (as required) IEEE 1012

25 Review Support—participation in software and management reviews IEEE 1012

1 Problem statement ANSI/ANS-10.4

2 Requirements specification ANSI/ANS-10.4

3 Design specification ANSI/ANS-10.4

4 Test plan and test results ANSI/ANS-10.4

Table A-21
Typical Policies and Directives of a Configuration Management Operation

1 Definition of software levels or classes IEEE 828

2 Naming conventions IEEE 828

3 Version ID conventions IEEE 828

4 Product ID policy IEEE 828

5 IDs of specs, test plans, manuals & documents IEEE 828

6 Media ID and file management IEEE 828

7 Documentation release process IEEE 828

8 Software release to general library IEEE 828

9 Problem reports, change requests and orders IEEE 828

10 Structure & operation of CCBs IEEE 828

11 Acceptance or release of software products IEEE 828

12 Operating rules for the software library IEEE 828

13 Audit policy IEEE 828

14 Methods for CCB assessment of change impact IEEE 828

15 Level of testing or assurance required before an item is accepted for
configuration management—may be related to software classes

IEEE 828

16 Level of SQA or V&V required before an item is accepted for
configuration management—may be related to software classes

IEEE 828

